Tingkatenergi paling rendah adalah kulit elektron yang terletak paling dalam, semakin keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya. Kelemahan: Model atom ini tidak bisa menjelaskan spektrum warna dari atom berelektron banyak.
Penulisan konfigurasi elektron untuk atom berelektron banyak didasarkan pada aturan aufbau, aturan Hund, dan prinsip larangan Pauli. Untuk menentukan jumlah elektron dalam atom, perlu diketahui nomor atom unsur bersangkutan.  Aturan Membangun Aufbau Aturan pengisian elektron ke dalam orbital-orbital dikenal dengan prinsip Aufbau bahasa Jerman, artinya membangun. Menurut aturan ini, elektron dalam atom harus memiliki energi terendah, artinya elektron harus terlebih dahulu menghuni orbital dengan energi terendah. Tingkat energi elektron ditentukan oleh bilangan kuantum utama. Bilangan kuantum utama dengan n = 1 merupakan tingkat energi paling rendah, kemudian meningkat ke tingkat energi yang lebih tinggi, yaitu n = 2, n = 3, dan seterusnya. Jadi, urutan kenaikan tingkat energi elektron adalah n = 1 < n = 2 < n =3 < … < n = n. Setelah tingkat energi elektron diurutkan berdasarkan bilangan kuantum utama, kemudian diurutkan lagi berdasarkan bilangan kuantum azimut sebab orbital-orbital dalam atom berelektron banyak tidak terdegenerasi. Berdasarkan bilangan kuantum azimut, tingkat energi terendah adalah orbital dengan bilangan kuantum azimut terkecil atau ℓ= 0. Jadi, urutan tingkat energinya adalah s < p < d < f < [ ℓ = n–1]. Terdapat aturan tambahan, yaitu aturan n+ℓ. Menurut aturan ini, untuk nilai n+ℓ sama, orbital yang memiliki energi lebih rendah adalah orbital dengan bilangan kuantum utama lebih kecil, contoh 2p 2+1 = 3 < 3s 3+0 =3, 3p 3+1 = 4 < 4s 4+0 =4, dan seterusnya. Jika nilai n+ℓ berbeda maka orbital yang memiliki energi lebih rendah adalah orbital dengan jumlah n+ℓ lebih kecil, contoh 4s 4+0 = 4 < 3d 3+2 =5. Dengan mengacu pada aturan aufbau maka urutan kenaikan tingkat energi elektron-elektron dalam orbital adalah sebagai berikut. 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < … 127  Aturan Hund Aturan Hund disusun berdasarkan data spektroskopi atom. Aturan ini menyatakan sebagai berikut. 1. Pengisian elektron ke dalam orbital-orbital yang tingkat energinya sama, misalnya ketiga orbital-p atau kelima orbital-d. Oleh karena itu, elektron- elektron tidak berpasangan sebelum semua orbital dihuni. 2. Elektron-elektron yang menghuni orbital-orbital dengan tingkat energi sama, misalnya orbital pz, px, py Oleh karena itu, energi paling rendah dicapai jika spin elektron searah.  Prinsip Larangan Pauli Menurut Wolfgang Pauli, elektron-elektron tidak boleh memiliki empat bilangan kuantum yang sama. Aturan ini disebut Prinsip larangan Pauli. Makna dari larangan Pauli adalah jika elektron-elektron memiliki ketiga bilangan kuantum n, ℓ, m sama maka elektron-elektron tersebut tidak boleh berada dalam orbital yang sama pada waktu bersamaan. Akibatnya, setiap orbital hanya dapat dihuni maksimum dua elektron dan arah spinnya harus berlawanan. Sebagai konsekuensi dari larangan Pauli maka jumlah elektron yang dapat menghuni subkulit s, p, d, f, …, dan seterusnya berturut-turut adalah 2, 6, 10, 14, ..., dan seterusnya. Hal ini sesuai dengan rumus 22 ℓ + 1. Pauli adalah seorang ahli teori. Menggunakan hasil observasi ilmuwan lain, dia menemukan spin elektron dan mengemukakan asas larangan Pauli. Hal ini membawanya memenangkan hadiah Nobel di bidang Fisika pada 1945. Lahir pada 1900, Pauli hidup sampai pada 1958 dan membuat penemuan terkenal pada usia 25 tahun. SumberChemistry The Molecular Science, 1997. Untuk menuliskan konfigurasi elektron, bayangkan bahwa inti atom memiliki tingkat-tingkat energi, dan setiap tingkat energi memiliki orbital-orbital yang masih kosong. Kemudian, elektron-elektron ditempatkan pada orbital-orbital sesuai dengan urutan tingkat energinya aturan Aufbau, dan tingkat energi paling rendah diisi terlebih dahulu. Pengisian orbital dengan tingkat energi sama, seperti px, py, pz diusahakan tidak berpasangan sesuai aturan Hund, tempatnya boleh di mana saja, px, py, atau pz. Jika setelah masing-masing orbital dihuni oleh satu elektron masih ada elektron lain maka elektron ditambahkan untuk membentuk pasangan dengan spin berlawanan. Dalam setiap orbital maksimum dihuni oleh dua elektron, sesuai aturan Pauli Prinsip aufbau elektron harus menghuni orbital atom dengan energi terendah dulu, yaitu 1s 2s 2p 3s 3p 4s … dan seterusnya. Prinsip Pauli setiap orbital maksimum dihuni oleh dua elektron dengan spin berlawanan. Prinsip Hund pengisian elektron dalam orbital yang tingkat energinya sama, tidak berpasangan dulu sebelum semua orbital dihuni dulu. Dengan demikian, konfigurasi elektron atom poliatomik dapat dituliskan sebagai berikut. 11Na = 1s2 2s2 2p6 3s1 11Na = [Ne] 3s1 12Mg = 1s2 2s2 2 p6 3s2 12Mg = [Ne] 3s2 13Al = 1s2 2s2 2 p6 3s2 3p1 13Al = [Ne] 3s2 3p1 14Si = 1s2 2s2 2 p6 3s2 3p2 14Si = [Ne] 3s2 3p2 15P = 1s2 2s2 2 p6 3s2 3p3 15P = [Ne] 3s2 3p3 16S = 1s2 2s2 2 p6 3s2 3p4 16S = [Ne] 3s2 3p4 17Cl = 1s2 2s2 2p6 3s2 3p5 17Cl = [Ne] 3s2 3p5 Beberapa konfigurasi elektron atom dengan nomor atom 1 sampai nomor atom 20 ditunjukkan pada tabel berikut. 128 Z Unsur Konfigurasi Z Unsur Konfigurasi 1. H 1s1 11. Na 1s2 2s2 2p6 3s1 2. He 1s2 12. Mg 1s2 2s2 2p6 3s2 3. Li 1s2 2s1 13. Al 1s2 2s2 2p6 3s2 3p1 4. Be 1s2 2s2 14. Si 1s2 2s2 2p6 3s2 3p2 5. B 1s2 2s2 2p1 15. P 1s2 2s2 2p6 3s2 3p3 6. C 1s2 2s2 2p2 16. S 1s2 2s2 2p6 3s2 3p4 7. N 1s2 2s2 2p3 17. Cl 1s2 2s2 2p6 3s2 3p5 8. O 1s2 2s2 2p4 18. Ar 1s2 2s2 2p6 3s2 3p6 9. F 1s2 2s2 2p5 19. K [Ar] 4s1 10. Ne 1s2 2s2 2p6 20 Ca [Ar] 4s2 129 Lampiran 2. Materi Pembelajaran Remedial NOMOR ATOM  Menyatakan jumlah proton dalam atom.  Untuk atom netral, jumlah proton = jumlah elektron nomor atom juga menyatakan jumlah elektron.  Diberi simbol huruf Z  Atom yang melepaskan elektron berubah menjadi ion positif, sebaliknya yang menerima elektron berubah menjadi ion negatif. Contoh 19K NOMOR MASSA  Menunjukkan jumlah proton dan neutron dalam inti atom.  Proton dan neutron sebagai partikel penyusun inti atom disebut Nukleon.  Jumlah nukleon dalam atom suatu unsur dinyatakan sebagai Nomor Massa diberi lambang huruf A, sehingga A = nomor massa = jumlah proton p + jumlah neutron n A = p + n = Z + n  Penulisan atom tunggal dilengkapi dengan nomor atom di sebelah kiri bawah dan nomor massa di sebelah kiri atas dari lambang atom tersebut. Notasi semacam ini disebut dengan Nuklida. X Z A Keterangan X = lambang atom A = nomor massa Z = nomor atom Contoh U 92 238 SUSUNAN ION  Suatu atom dapat kehilangan/melepaskan elektron atau mendapat/menerima elektron tambahan.  Atom yang kehilangan/melepaskan elektron, akan menjadi ion positif kation.  Atom yang mendapat/menerima elektron, akan menjadi ion negatif anion.  Dalam suatu Ion, yang berubah hanyalah jumlah elektron saja, sedangkan jumlah proton dan neutronnya tetap. Contoh Spesi Proton Elektron Neutron Atom Na 11 11 12 Ion Na 11 10 12 Ion Na 11 12 12 Rumus umum untuk menghitung jumlah proton, neutron dan elektron 1. Untuk nuklida atom netral X A Z p = Z e = Z n = A-Z 2. Untuk nuklida kation  y X A Z p = Z e = Z – +y n = A-Z 3. Untuk nuklida anion  y X A 130 e = Z – -y n = A - Z ISOTOP, ISOBAR DAN ISOTON
Dengankata lain, energi suatu atom adalah terkuantisasi. Oleh karena elektron hanya diperbolehkan berada pada tingkat energi tertentu, maka elektron hanya punya sedikit kemungkinan untuk memancarkan energi cahaya ketika berpindah orbit. Karena orbital berada dalam tingkat energi tertentu, maka konfigurasi elektron disusun berdasarkan Konfigurasi elektron adalah susunan penyebaran pengisian elektron-elektron dalam. Seperti yang telah dibahas dalam bab Struktur Atom, di dalam atom terdapat partikel subatomik neutron dan proton yang terdapat pada inti atom, dan elektron yang bergerak mengelilingi inti atom tersebut pada kulit-kulit elektron level-level energi yang tertentu. Lintasan peredaran elektron ini disebut juga kulit elektron. Kulit pertama yang terdekat dengan inti atom disebut kulit K, kemudian kulit kedua disebut kulit L, kulit ketiga disebut kulit M, dan seterusnya berurut berdasarkan alfabet sebagaimana kulit menjauhi inti atom. Kulit elektron ini juga dapat dinyatakan dengan bilangan kuantum utama n, dimulai dari 1 untuk kulit K, 2 untuk kulit L, dan seterusnya. Semakin besar nilai n, semakin jauh kulit elektron dari inti atom dan semakin besar energi elektron yang beredar di kulit terkait. Elektron-elektron akan mengisi kulit-kulit elektron pada atom dimulai dari kulit K yang merupakan level energi terendah. Setiap kulit elektron hanya dapat terisi sejumlah tertentu elektron. Jumlah maksimum elektron yang dapat terisi pada kulit elektron ke-n adalah 2n2. Namun, jumlah maksimum elektron pada kulit terluar dari suatu atom adalah 8. Lebih jelasnya, perhatikan ilustrasi pada Gambar 1 dan Tabel 1. Gambar 1. Ilustrasi konfigurasi elektron atom Li, B, O, Ne, Na, dan K berdasarkan kulit elektron Sumber Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. Untuk atom unsur golongan transisi, konfigurasi elektron nya tidak dapat ditentukan dengan metode penentuan berdasarkan kulit elektron untuk atom unsur golongan utama seperti di atas. Penentuan konfigurasi elektron atom unsur golongan transisi didasarkan pada orbital atom. Setiap orbital dalam atom akan ditandai dengan satu set nilai bilangan kuantum utama n, bilangan kuantum azimuth l, dan bilangan kuantum magnetik m yang khusus. Lalu, setiap orbital maksimum terisi 2 elektron, yang masing-masing memiliki bilangan kuantum spin s tersendiri. Keempat bilangan kuantum tersebut digunakan untuk men-deskripsi’-kan energi elektron, sebagaimana seperti alamat’ elektron dalam sebuah atom untuk menemukan keberadaan elektron dalam atom tersebut. Bilangan kuantum utama n mendeskripsikan ukuran dan tingkat energi orbital. Nilai n yang diperbolehkan adalah bilangan bulat positif. Bilangan kuantum azimuth l mendeskripsikan bentuk orbital. Nilai l yang diperbolehkan adalah bilangan bulat dari 0 hingga n−1. Bilangan kuantum magnetik m mendeskripsikan orientasi orbital. Nilai m yang diperbolehkan adalah bilangan bulat dari −l hingga +l. Bilangan kuantum spin s mendeskripsikan arah spin elektron dalam orbital. Nilai s yang diperbolehkan adalah +½ atau−½. Aturan penentuan konfigurasi elektron berdasarkan orbital 1. Asas Aufbau Elektron menempati orbital-orbital dimulai dari tingkat energi yang terendah, dimulai dari 1s, 2s, 2p, dan seterusnya seperti urutan subkulit yang terlihat pada Gambar 2. Gambar 2. Urutan tingkat energi subkulit Sumber Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. 2. Asas larangan Pauli Tidak ada dua elektron dalam satu atom yang memiliki keempat bilangan kuantum yang sama. Setiap orbital maksimum diisi oleh 2 elektron yang memiliki spin yang berlawanan. 3. Kaidah Hund Jika ada orbital dengan tingkat energi yang sama, konfigurasi elektron dengan energi terendah adalah dengan jumlah elektron tak berpasangan dengan spin paralel yang paling banyak. Gambar 3. Diagram orbital dan konfigurasi elektron berdasarkan orbital dari 10 unsur pertama Sumber Gilbert, Thomas al. 2012. Chemistry The Science in Context 3rd edition. New York W. W. Norton & Company, Inc. Contoh Soal Konfigurasi Elektron Tentukan konfigurasi elektron dan jumlah elektron dalam setiap kulit elektron atom unsur berikut. a. Ni Z = 28 b. SrZ = 38 Jawab Ni Z = 28 1s2 2s2 2p6 3s2 3p6 4s2 3d8 atau [Ar] 4s2 3d8; K = 2 ; L = 8 ; M = 16 ; N = 2 Sr Z = 38 1s2 2s2 2p6 3s2 3p6 4s2 3d104p6 5s2atau [Kr] 5s2; K = 2 ; L = 8 ; M = 18 ; N = 8 ; O = 2 Berdasarkan eksperimen, terdapat anomali konfigurasi elektron dari aturan-aturan di atas. Subkulit d memiliki tendensi untuk terisi setengah penuh atau terisi penuh. Contohnya, Cr Z = 24 [Ar] 4s1 3d5 lebih stabil dibanding [Ar] 4s2 3d4 ; dan juga Cu Z = 29 [Ar] 4s1 3d10 lebih stabil dibanding [Ar] 4s2 3d9. Untuk ion monoatomik seperti Na+, K+, Ca2+, S2-, Br– dapat ditentukan dari konfigurasi elektron atom netralnya terlebih dahulu. Pada kation ion bermuatan positif monoatomik Ax+ yang bermuatan x+, sebanyak x elektron dilepas dikurangi dari kulit elektron terluar atom netral A. Pada anion ion bermuatan negatif monoatomik By– yang bermuatan y-, sebanyak y elektron ditangkap ditambahkan pada orbital level energi terendah yang masih belum penuh oleh elektron. Referensi Konfigurasi Elektron – Cracolice, Mark S. & Peters, Edward I. 2011. Introductory Chemistry An Active Learning Approach 4th edition. California Brooks/Cole, Cengage Learning. – Earl, Bryan & Wilford, Doug. 2014. Cambridge IGCSE Chemistry 3rd edition. London Hodder Education. – Gilbert, Thomas N. et al. 2012. Chemistry The Science in Context 3rd edition. New York W. W. Norton & Company, Inc. – McMurry, John. et al. of General, Organic, and Biological Chemistry 7th edition. Illinois Pearson Education, Inc. – Petrucci, Ralph H. et al. 2011. General Chemistry Principles and Modern Applications 10th edition. Toronto Pearson Canada Inc. – Purba, Michael. 2006. Kimia 1A untuk SMA Kelas X. Jakarta Erlangga. – Purba, Michael. 2006. Kimia 2A untuk SMA Kelas XI. Jakarta Erlangga. – Silberberg, Martin S. 2009. Chemistry The Molecular Nature of Matter and Change5th edition. New York McGraw Hill – Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. Judul artikel Konfigurasi Elektron Kontributor Nirwan Susianto, Alumni Kimia UI Materi lainnya Struktur Atom Reaksi Reduksi Oksidasi Stoikiometri
Untukhidrogen elektron tunggalnya mengisi pada orbital 1s, yaitu keadaan dengan energi terendah untuk atom hidrogen. Untuk atom berelektron banyak pengisian mengikuti aturan aufbau, yaitu dimulai dari tingkat energi yang lebih rendah kemudian mengisi tingkat energi berikutnya yaitu 2s, kemudian 2p, dan seterusnya sesuai dengan urutan tingkat
ATOM BERELEKTRON BANYAK A. MODEL ATOM BOHR * Keunggulan Dapat menjelaskan adanya 1. Kestabilan atom 2. Spektrum garis pada atom hidrogen deret Lyman, Balmer, Paschen, Brackett, Pfund * Kelemahan Tidak dapat menjelaskan 1. Efek Zeeman yaitu, gejala tambahan garis-garis spektrum jika atom-atom tereksitasi diletakkan dalam medan magnet. 2. Spektrum garis yang dipancarkan oleh atom berelektron banyak. 3. Pada spektrum suatu atom, beberapa garis spektrum memiliki intensitas lebih besar dari garis spektrum yang lain. B. MODEL ATOM MEKANIKA KUANTUM * Dikembangkan oleh Erwin Schrodinger dan Werner Heisenberg * Dikenal dengan Teori Mekanika Kuantum 1. Bilangan kuantum utama n Menentukan besar energi total elektron Energi total elektron atom hidrogen E=− 13,6 n2 eV Energi total elektron ion He+, Li2+ E=− 13,6 ⋅ z 2 n2 z = nomor atom He + → z = 2 Li2+ → z = 3 - Energi total elektron banyak E=− 2. 13,6 ⋅ z ef 2 n2 z ef = nomor atom efektif Jumlah elektron maksimum pada orbit ke-n adalah 2n 2 jadi ∑ e = 2n2 Bilangan Kuantum Orbital/Azimuth Penemu Arnold Sommerfeld → orbit ellips menentukan besar momentum anguler/sudut orbital elektron l = n – 1 jadi l = 0, 1, 2, 3, ... besar momentum sudut L © SMA NEGERI 8 JAKARTA Halaman -1- h h = h 2π 2π h tetapan Planck l makin kecil → L makin kecil bentuk orbit semakin pipih. L = ll + 1 - l=2 l=0 l=1 inti l=3 3. Bilangan kuantum magnetik ml Menunjukkan arah dari momentum sudut orbital ml = − l , ..., 0, ... + l Banyaknya nilai yang diperbolehkan jumlah orbital ml = 2l + 1 - Arah momentum sudut dikuantisasi dengan acuan ke medan magnet luar kuantisasi ruang Lz L z = ml h Contoh l = 2 z 2h h 0 −h L= 22 + 1h = 6h 6h 6h 6h −2 h - 4. 6h Anomali efek Zeeman AEZ pengecualian gejala tambahan garis spektrum yang tidak sesuai dengan jumlah yang diperkirakan. Contoh garis pertama deret Balmer dari atom hidrogen yang menunjukkan sebuah struktur halus oleh Phipps dan Taylor Bilangan Kuantum Spin ms Menunjukkan arah perputaran elektron pada sumbunya Ada 2 nilai, ms = ± 1 2 - Pauli berhasil menjelaskan adanya AEZ penyebab → rotasi tersembunyi Goudsmit & Uhlenbeck → rotasi tersembunyi disebabkan oleh momentum sudut intrinsik momentum sudut spin Besar momentum sudut spin S S = ms ms + 1 h © SMA NEGERI 8 JAKARTA Halaman -2- - Arah vektor momentum sudut spin S z S z = ms h Nama kulit Bilangan kuantum utama n Nama subkulit Bilangan kuantum orbital l Banyak orbital ml = 2l + 1 Jumlah elektron l = 2 × m * K 1 s 0 1 L 2 p 1 3 M 3 d 2 5 N 4 f 3 7 O 5 g 4 9 2 6 10 14 18 KONFIGURASI ELEKTRON Yaitu susunan elektron-elektron dalam atom yang sesuai dengan tingkat energinya. Aturan-aturan 1. Prinsip Aufbau Elektron mengisi orbital dari tingkat energi yang paling rendah sampai yang paling tinggi. Contoh Atom K → z = 19, konfigurasi elektronnya 1s2 2s2 2p6 3s2 3p6 4s1 1s 2s 3s 4s 5s 6s 7s * 2p 3p 5p 5p 6p 3d 4d 5d 6d 4f 5f 2. Aturan Hund • Dalam orbital yang setingkat, elektron-elektron tidak boleh berpasangan sebelum seluruh orbital setingkat terisi oleh sebuah elektron. • Contoh tidak boleh 3. Larangan Pauli dalam satu atom tidak boleh ada elektron yang mempunyai keempat bilangan kuantum yang sama harganya. SPEKTRUM EMISI & ABSORPSI Adanya spektrum menunjukkan adanya tingkat energi. 1. Spektrum Emisi • Dihasilkan dari zat yang memancarkan gelombang elektromagnetik • Dapat diamati denan spektroskop • Ada 3 jenis a. spektrum garis - dihasilkan oleh gas-gas bertekanan rendah yang dipanaskan - terdiri dari garis-garis cahaya monokromatik dengan panjang gelombang tertentu yang merupakan karakteristik dari unsur yang menghasilkan spektrum tersebut © SMA NEGERI 8 JAKARTA Halaman -3- b. c. 2. * spektrum pita - dihasilkan oleh gas dalam keadaan molekuler Contoh gas H2, O2, N2 dan CO - spektrum yang dihasilkan berupa kelompok-kelompok garis yang sangat rapat sehingga membentuk pita-pita. spektrum kontinue - spektrum kontinue terdiri atas cahaya dengan semua panjang gelombang, walaupun dengan intensitas yang berbeda - dihasilkan oleh zat padat, zat cair dan gas yang berpijar Spektrum Absorpsi - terjadi karena penyerapan panjang gelombang tertentu oleh suatu zat terhadap radiasi gelombang elektromagnetik yang memiliki spektrum kontinue - terdiri dari sederetan garis-garis hitam pada spektrum kontinue - Contoh spektrum matahari sepintas spektrum matahari tampak seperti spektrum kontinue, tetapi jika dicermati akan tampak garis-garis gelap terang yang disebut garis-garis Fraunhofer. Hal ini disebabkan cahaya putih dari bagian inti matahari diserap oleh atom-atom atau molekul-molekul gas dalam atmosfer matahari maupun atmosfer bumi. ENERGI IONISASI DAN AFINITAS ELEKTRON Apabila suatu atom menerima energi dari luar yang cukup untuk mengeksitasi elektron melampaui tingkat energi tertinggi, maka elektron tersebut akan meninggalkan atom.  Energi ionisasi energi terendah yang dibutuhkan untuk melepaskan sebuah elektron dari ikatan atomnya +13,6 Contoh energi ionisasi atom hidrogen pada kulit ke-n adalah En = eV n2 Ø Energi ionisasi merupakan ukuran kestabilan konfigurasi elektron terluar dari suatu atom Ø Makin besar energi ionisasi, makin sukar atom tersebut untuk melepaskan elektron Ø Dalam satu periode dari kiri ke kanan energi ionisasinya makin besar Ø Dalam satu golongan dari atas ke bawah energi ionisasinya makin § § §  Jumlah elektron pada orbit terluar disebut ELEKTRON VALENSI Elektron valensi kurang dari 4 cenderung melepaskan elektron, sedangkan yang lebih dari 4 cenderung menerima elektron Atom-atom yang menangkap elektron membentuk Ion negatif disertai dengan pembebasan sejumlah energi AFINITAS ELEKTRON energi yang dibebaskan pada saat suatu atom menangkap sebuah elektron © SMA NEGERI 8 JAKARTA Halaman -4- MOLEKUL, ZAT PADAT PITA ENERGI A. MOLEKUL molekul terbentuk karena adanya gaya tarik-menarik antara 2 atom atau lebih gaya coulomb Ikatan molekul 1. Ikatan Ion - disebabkan oleh gaya coulomb, atom satu melepas satu elektron terluarnya dan yang lain menerima. - Contoh NaCl + + Na Cl + Na+ + Cl− Na → Na + + e membutuhkan energi Cl + e → Cl− melepaskan energi 2. Ikatan Kovalen - ikatan yang terjadi di antara dua atom dengan memakai satu atau dua elektron bersama. - Contoh H2 H → H+ + e 3. H2 Ikatan Hidrogen - terjadi akibat gaya tarik-menarik elektrostatik kuat antara hidrogen pada satu molekul dengan atom N, O atau F dari molekul lain. B. ZAT PADAT Zat padat terbentuk karena antaratomnya terikat oleh ikatan - ionik garam padat - kovalen intan - Van der Waals H2O padat - hidrogen hidrogen padat - logam 1. Ikatan Van der Waals Ikatan yang terjadi karena gaya tarik-menarik antar dipol H2O dengan H2O, N2 padat, CH4 padat. © SMA NEGERI 8 JAKARTA Halaman -5- 2. Ikatan Logam Ikatan terjadi antara awan elektron dengan ion-ion positif C. PITA ENERGI Elektron-elektron yang mengelilingi inti atom memiliki energi. Bila atom-atom berdekatan, maka elektron-elektron pada atom mengalami pergeseran/perubahan energi. E E E 2s pita energi E 1s atom tunggal Banyak atom berdekatan Pita Energi sekumpulan energi-energi yang besarnya tidak jauh berbeda. Banyak elektron pada setiap pita energi adalah ∑ e = 22l + 1N Keterangan l = bilangan kuantum orbital 0, 1, 2, 3, ... N = banyaknya atom yang saling berdekatan Pita Valensi PV pita energi terakhir yang terisi penuh elektron Pita Konduksi PK pita energi yang terisi sebagian atau tidak terisi elektron Celah Energi CE selisih energi pada pita valensi dan konduksi Contoh Na11 N 2p 6N 2s 1s 2N 2N Pada Na 11 pita konduksi terisi sebagian oleh sebab itu elektron-elektron pada PK akan bergerak bebas yang memungkinkan Na sebagai konduktor yang baik. Ditinjau dari konduktivitas zat pada yang berkaitan dengan pita energi dibagi sebagai berikut 1. 2. Konduktor • PV penuh • CE sempit • PK sebagian Isolator • PV penuh • CE lebar • PK kosong © SMA NEGERI 8 JAKARTA Halaman -6- 3. Semikonduktor • PV penuh • CE sedang • PK kosong SEMIKONDUKTOR Si, Ge Berdasarkan kemurniannya, semikonduktor dibedakan menjadi 1. Intrinsik • Semikonduktor yang belum dikotori • Bersifat isolator pada suhu rendah • Bersifat konduktor pada suhu sedang 300 K 2. Ekstrinsik • Semikonduktor yang telah dikotori golongan IIIA, VA • Bersifat isolator pada suhu rendah • lebih bersifat konduktor jika dibanding intrinsik Ada dua macam semikonduktor Ekstrinsik, yaitu a. Semikonduktor ekstrinsik tipe N - dibuat dengan mengotori kristal Si IVA dengan atom golongan VAAs, Sb, P Si elektron bebas Si As Si Si - Atom-atom golongan VA As disebut atom donor menyumbangkan sebuah elektron bebas - Pembawa muatan mayoritas elektron - Pembawa muatan minoritas hole - Untuk menjadi konduktor hanya dibutuhkan sedikit energi ± 0,05 eV b. Semikonduktor ekstrinsik tipe P - dibuat dengan mengotori kristal Si IVA dengan atom golongan IIIBoron, Al, Ga, I, Tl Si Si B Si hole Si - Pembawa muatan mayoritas hole - Pembawa muatan minoritas elektron © SMA NEGERI 8 JAKARTA Halaman -7- Kegunaan semikonduktor 1. Thermistor Thermally Sensitive Resistor - thermometer hambat yang sangat peka - dasar kerja kenaikan suhu, hambat jenis semikonduktor turun sehingga kuat arus naik. 2. Penunda arus 3. Pengukur intensitas cahaya - semakin besar intensitas cahaya semakin banyak fotonnya sehingga semakin besar energi yang dibawa berkas cahaya itu. Hal ini menyebabkan penurunan hambat jenis sehingga menaikkan kuat arus listrik pada rangkaian. 4. Penyaring - energi foton sinar inframerah sesuai dengan celah energi germanium, sehingga apabila sinar putih dilewatkan pada kristal Ge, hanya sinar inframerah saja yang lolos sedangkan sinar-sinar yang lain diserap. SOAL-SOAL LATIHAN Atom Berelektron Banyak, Molekul, Zat Padat dan Pita Energi 1. Salah satu konsep atom menurut Dalton adalah ... a. molekul terdiri dari atom-atom b. massa keseluruhan atom berubah c. atom tidak bergabung dengan atom lainnya d. atom tidak dapat membentuk suatu molekul e. atom dapat dipecah-pecah lagi 2. Percobaan hamburan Rutherford menghasilkan kesimpulan ... a. atom adalah bagian terkecil dari unsur b. elektron adalah bagian atom yang bermuatan listrik negatif c. atom memiliki massa yang tersebar secara merata d. massa atom terpusat di suatu titik yang disebut inti e. elektron mengelilingi inti pada lintasan tertentu 3. Berikut ini beberapa kesamaan antara model atom Rutherford dan model atom Bohr, kecuali ... a. elektron berputar mengelilingi inti dengan membebaskan sejumlah energi b. elektron merupakan bagian atom yang bermuatan negatif c. atom berbentuk bola kosong dengan inti berada di tengah d. secara keseluruhan atom bersifat netral e. massa atom terpusat pada inti atom © SMA NEGERI 8 JAKARTA Halaman -8- 4. Salah satu model atom menurut Bohr adalah ... a. elektron bergerak dengan lintasan stasioner b. energi foton yang terpancar berbanding terbalik dengan f c. tidak memiliki momentum anguler d. atom merupakan bola pejal bermuatan positif e. atom tidak dapat dipecah-pecah lagi 5. Dalam postulat Bohr tentang momentum sudut, tersirat sifat gelombang elektron, panjang gelombang λ elektron yang bergerak dalam suatu orbit berjari-jari r memenuhi ... . n bilangan bulat a. r = nλ b. 2πr = nλ c. 2πr = n2λ λ d. r = n λ e. 2πr = 2 n 6. Menurut Bohr, elektron bergerak mengelilingi inti hanya pada lintasan tertentu dan besarnya momentum anguler elektron pada lintasan itu adalah ... a. berbanding terbalik dengan tetapan Planck b. berbanding lurus dengan tetapan Planck c. berbanding lurus dengan tetapan Rydberg d. berbanding terbalik dengan tetapan Rydberg e. berbanding terbalik dengan momentum linier 7. Sebuah atom akan memancarkan foton, apabila salah satu elektronnya ... . a. meninggalkan atom itu b. bertumbukan dengan elektron lainnya c. bertukar tingkat energi dengan elektron yang lain d. mengalami transisi ke tingkat energi yang lebih rendah e. mengalami transisi ke tingkat energi yang lebih tinggi © SMA NEGERI 8 JAKARTA Halaman -9- 8. Menurut teori atom Bohr, elektron bermassa 9 × 10−31 kg pada atom hidrogen dengan jari-jari 0,53 Å akan mempunyai kecepatan sebesar ... 1c 1 c a. d. 100 b. c. 9. 2 1 5 c 1 13 e. 1 137 c c Pemancaran sinar ultraviolet pada atom hidrogen terjadi apabila elektron berpindah dari ... . a. lintasan 1 ke lintasan 2 b. lintasan 2 ke lintasan 4 c. lintasan 3 ke lintasan 2 d. lintasan 4 ke lintasan 1 e. lintasan 4 ke lintasan 2 10. Berdasarkan model atom Bohr, tetapan Rydberg 1, m−1 jika terjadi transisi elektron dari lintasan n = 4 ke lintasan n = 2 dipancarkan foton dengan panjang gelombang ... . a. 1,82 × 10−7 b. 2,43 × 10−7 c. 3,65 × 10−7 d. 4,86 × 10−7 e. 7,29 × 10−7 11. Jika konstanta Rydberg 1, maka panjang gelombang terbesar dari deret Balmer adalah ... a. 1215 Å d. 6563 Å b. 4050 Å e. 8752 Å c. 5127 Å 12. Energi foton sinar tampak yang dipancarkan atom hidrogen ketika terjadi transisi elektron dari kulit ke-4 ke kulit ke-2 adalah ... a. 13,6 eV d. 2,55 eV b. 6,8 eV e. 54,4 eV c. 3,4 eV 13. Jika energi elektron atom hidrogen pada tingkat dasar 13,6 eV, maka energi yang diserap atom hidrogen agar elektronnya tereksitasi dari tingkat dasar ke lintasan kulit M adalah ... . a. 6,82 eV d. 10,20 eV b. 8,53 eV e. 12,09 eV c. 9,07 eV © SMA NEGERI 8 JAKARTA Halaman -10- 14. Bila elektron berpindah dari kulit M ke kulit K pada atom hidrogen dan R adalah tetapan Rydberg, maka panjang gelombang yang terjadi besarnya ... 8 a. 9R 9 b. 8R 17 c. 9R 9 d. 17R 1 e. R 15. Elektron atom hidrogen model Bohr mengelilingi intinya dengan bilangan kuantum n, bila energi ionisasi atom itu 1 kali energi ionisasi atom itu bernilai 16 dalam keadaan dasarnya, maka nilai n itu adalah ... . a. 2 b. 4 c. 8 d. 16 e. 32 16. Dalam model atom Bohr, elektron atom hidrogen yang mengorbit di sekitar inti atom membangkitkan kuat arus listrik rata-rata sebesar 0,8 mA pada suatu titik di orbit lintasannya, bila besar muatan elektron adalah 1, C maka jumlah putaran per sekon elektron tadi mengelilingi inti adalah ... a. 5 × 1012 b. 5 × 1013 c. 5 × 1015 d. 5 × 1016 e. 5 × 1018 17. Pada model atom Bohr, elektron atom hidrogen bergerak dengan orbit lingkaran dengan laju sebesar 2, m/s, jika e = 1, c dan me = 9, kg, maka besarnya arus pada orbit tersebut adalah ... . a. 1,06 pA b. 1,06 nA c. 1,06 µA d. 1,06 mA e. 1,06 A © SMA NEGERI 8 JAKARTA Halaman -11- 18. Diagram di bawah ini menunjukkan empat tingkatan energi suatu atom logam -5,2 . 10-19 J -9,0 . 10-19 J -16,4 . 10-19 J -24,6 . 10-19 J dari pengolahan data di atas, dengan mengendalikan transisi ke tingkatan energi yang lebih rendah selalu mungkin, dapat ditarik kesimpulan bahwa 1. ada 6 garis spektrum yang mungkin terjadi akibat transisi elektron 2. panjang gelombang minimum spektrum emisinya 3. panjang gelombang maksimum spektrum emisinya 4. adanya komponen spektrum emisi yang merupakan sinar tampak 19. Perbandingan frekuensi yang dipancarkan foton apabila elektron pindah dari orbit 2 ke orbit 1 dengan elektron yang pindah dari orbit 4 ke orbit 1 adalah ... a. 4 5 d. 2 4 b. 4 2 e. 1 4 c. 4 1 20. Atom A dapat mengadakan ikatan ionik dengan atom B jika ... a. atom A dan atom B saling melepaskan sejumlah elektron terluar yang sama jumlahnya b. atom A dan atom B merupakan atom dari suatu unsur yang sejenis c. atom A dan atom B memakai sejumlah elektron secara bersamasama d. atom A dan atom B membentuk dipol-dipol listrik e. atom A melepaskan sejumlah elektron dan atom B menerima elektron tersebut 21. Ikatan antaratom dengan pemakaian bersama sejumlah elektron pada kulit terluar atom-atom penyusun disebut ... . a. ikatan Van der Waals b. ikatan ionik c. ikatan kovalen d. ikatan logam e. ikatan hidrogen © SMA NEGERI 8 JAKARTA Halaman -12- 22. Semikonduktor tipe-n memiliki ... a. tingkat energi akseptor yang terletak di dekat pita konduksi b. tingkat energi donor yang terletak di dekat pita valensi c. tingkat energi akseptor yang terletak di dekat pita valensi d. tingkat energi donor yang terletak di dekat pita konduksi e. tingkat energi donor yang terletak di bawah pita valensi 23. Pengotoran doping pada bahan semikonduktor intrinsik dimaksudkan untuk ... a. menurunkan daya hantar listriknya b. menurunkan resistivitasnya c. menurunkan harga jualnya d. memperbesar celah energinya e. memperbesar hambatan jenisnya 24. Semikonduktor intrinsik pada OK bersifat sebagai isolator, karena ... . a. jarak celah energi antara pita valensi dan pita konduksi terlalu besar b. tidak ada tingkat energi akseptor pada pita energi c. tidak ada tingkat energi donor pada pita energi d. tidak cukup energi bagi elektron untuk pindah ke pita konduksi e. tidak ada pembawa muatan yang diberikan dari luar 25. Yang berfungsi sebagai pembawa muatan mayoritas dalam bahwa semikonduktor ekstrinsik tipe n adalah ... a. elektron b. proton c. hole d. elektron dan hole e. proton dan hole 26. Beberapa sifat sinar-X adalah ... 1. dapat menghitamkan film 2. mampu menembus keping kayu 3. bergerak menurut garis lurus 4. menimbulkan ion-ion dalam udara yang dilaluinya © SMA NEGERI 8 JAKARTA Halaman -13- Erwinschrodinger spektrum atom dan mekanika kuantum bohr merupakan orang yang pertama menghubungkan teori struktur atom dengan tingkat energi elektron untuk menjelaskan spektrum. Dengan tingkat energi sama dalam suatu subkulit cenderung tidak berpasangan. Diagram Tingkat Energi Atom Berelektron Banyak Menurut Tidak dapat menjelaskan spektrum unsur atom yang berelektron banyak. Photo by Raphaël Biscaldi on Unsplash Orbital adalah wilayah atau daerah dalam ruang di sekitar inti atom yang memiliki kemungkinan tertinggi untuk bisa menemukan elektron. Pada penyusunan diagram orbital, sebuah elektron disimbolkan dengan anak panah menghadap ke atas yang melambangkan elektron dengan spin +½, atau menghadap ke bawah yang melambangkan elektron dengan spin -½. Untuk menandai distribusi orbital dalam atom, anak panah ini diletakkan pada garis horizontal, dalam lingkaran, atau umumnya di dalam kotak. Diagram orbital digunakan untuk memudahkan penentuan nilai bilangan kuantum, yaitu bilangan kuantum magnetik dan bilangan kuantum spin. Lalu bagaimana dengan bilangan kuantum utama dan bilangan kuantum azimut? Keduanya dapat ditentukan dengan mudah, hanya dengan melihat konfigurasi elektronnya. Artikel ini akan membahas langkah-langkah dan aturan dalam penyusunan diagram orbital. Langkah-langkah Penyusunan Diagram Orbital 1. Tuliskan konfigurasi elektron berdasarkan aturan Aufbau. Aturan Aufbau berprinsip bahwa pengisian elektron pada suatu orbital dimulai dari tingkat energi terendah ke tingkat energi yang lebih tinggi. Orbital s mempunyai tingkat energi terendah, dan berturut-turut makin tinggi untuk orbital p, d, dan f. Pengisian elektron pada orbital dapat digambarkan dengan diagram berikut. Sumber Gambar Setiap subkulit memiliki jumlah maksimum elektron, yakni Subkulit s maksimal berisi 2 elektron Subkulit p maksimal berisi 6 elektron Subkulit d maksimal berisi 10 elektron Subkulit f maksimal berisi 14 elektron Dengan mengacu pada gambar dan keterangan di atas, maka kita bisa menuliskan urutan konfigurasi elektron sebagai berikut 1s2 2s2 2p66 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 …. dan seterusnya. 2. Orbital akan dilambangkan dengan dengan kotak. Orbital s = 1 kotak, orbital p = 3 kotak, orbital d = 5 kotak dan orbital f = 7 kotak. Sumber 3. Isi kotak orbital dengan elektron-elektron yang dimiliki oleh masing-masing sub kulit dengan tanda panah ke atas atau ke bawah. Satu kotak diisi maksimum 2 elektron. Orbital-orbital yang memiliki energi yang sama akan dilambangkan dengan sekelompok kotak yang bersisian. Sedangkan orbital-orbital dengan tingkat energi berbeda, digambarkan dengan kotak yang terpisah. Pada pengisian orbital elektron ada beberapa aturan yang harus diikuti, yakni A. Asas Larangan Pauli Asas larangan Pauli menyatakan bahwa “Tidak boleh ada dua elektron dalam suatu atom yang memiliki empat bilangan kuantum yang sama. Orbital yang sama akan memiliki bilangan kuantum n, l, dan m yang sama. Yang membedakannya hanya bilangan kuantum spin s.” Hal ini berarti bahwa setiap orbital maksimum berisi dua elektron dengan arah spin yang berlawanan. B. Aturan Hund Seorang ahli fisika dari Jerman, Friedrich Hund 1927 mengemukakan aturan pengisian elektron pada orbital yaitu “Orbital-orbital dengan energi yang sama, masing-masing diisi terlebih dahulu oleh satu elektron dengan arah spin yang sama, kemudian elektron akan memasuki orbital-orbital secara urut dengan arah spin berlawanan, atau dengan kata lain, dalam subkulit yang sama, masing-masing orbital terisi satu elektron dengan arah panah yang sama, kemudian elektron yang tersisa diisikan sebagai elektron pasangannya dengan arah panah yang berlawanan”. Untuk memahami pernyataan di atas, mari kita coba perhatikan contoh diagram elektron berikut ini Sumber Bila kita perhatikan diagram orbital unsur S pada konfigurasi 3p4, tiga elektron ditempatkan terlebih dahulu dengan gambar tanda panah ke atas, kemudian 1 elektron yang tersisa digambarkan dengan tanda panah ke bawah. Hal ini dilakukan mengikuti aturan Hund. Nah itulah penjelasan tentang aturan dalam membuat diagram orbital. Dengan mengikuti aturan di atas, kamu bisa menuliskan diagram orbital dengan mudah. Apakah kamu memiliki pertanyaan mengenai hal ini? Silakan tuliskan pertanyaan kamu di kolom komentar ya. Dan jangan lupa untuk share pengetahuan ini. Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. You May Also Like
Bilangankuantum utama tidak pernah bernilai nol. Kedudukan elektron di sekitar inti atom atau konfigurasi elektron di sekitar inti atom berpengaruh terhadap sifat fisis dan kimia. Kimia Kelas X Special Education Quiz - Quizizz Struktur atom, sistem periodik, dan ikatan kimia a. Kedudukan elektron dalam atom dinyatakan menggunakan aturan.
Modern tidak dapat menjelaskan Spektrum atom H dalam medan listrik dan magnet Spektrum atom dengan banyak e– Utama tingkat energi Azimut bentuk orbital Magnetik orientasi orbital Spin arah rotasi elektron Konfigurasi elektron Sistem periodik Periode Golongan Aturan Aufbau Aturan Hund Aturan Pauli disusun berdasarkan nilai tertinggi menunjukkan menghasilkan menunjukan posisi atom unsur dalam terbagi ke dalam terdiri atas Teori atom Bohr Teori atom mekanika kuantum penyelesaian persamaannya menghasilkan Bilangan kuantum terdiri atas elektron valensi menunjukkan Apakah Anda merasa kesulitan dalam mempelajari bab ini? Bagian manakah dari materi Struktur Atom yang belum Anda kuasai? Jika Anda mengalami kesulitan, diskusikan dengan teman atau guru Anda. Refleksi Dengan memahami struktur atom, Anda akan lebih mengetahui perkembangan teori atom dan susunan elektron dalam atom. Dapatkah Anda tuliskan manfaat apa lagi yang Anda peroleh setelah mempelajari bab struktur atom ini? 1. Perbedaan model atom Bohr dengan model atom Rutherford terletak pada .... A. massa atom yang terpusat pada inti atom B. jumlah proton dengan jumlah elektron C. muatan proton sama dengan muatan elektron D. elektron dalam mengelilingi inti berada pada tingkat-tingkat energi tertentu E. proton dan neutron berada dalam inti, elektron bergerak mengelilingi inti 2. Jika logam tembaga dipanaskan dalam bunsen, nyala biru kehijauan diemisikan akibat .... A. emisi energi oleh elektron dalam atom tembaga yang tereksitasi B. penguapan atom tembaga karena pemanasan C. serapan energi oleh elektron dalam atom tembaga D. ionisasi atom tembaga membentuk ion Cu+ E. peralihan elektron dari tingkat energi rendah ke tingkat energi lebih tinggi 3. Kelemahan teori atom Bohr adalah .... A. atom bersifat tidak stabil B. tidak dapat menerangkan efek Zeeman dan efek Strack C. spektra atom hidrogen bersifat kontinu D. tidak melibatkan orbit berupa elips E. tidak dapat menjelaskan keadaan tereksitasi dari elektron 4. Efek Zeeman adalah .... A. terurainya atom hidrogen menjadi proton dan elektron. B. pengaruh medan magnet dalam medan listrik. C. terbentuknya beberapa spektrum halus dari atom hidrogen dalam medan magnet. D. terbentuknya beberapa spektrum halus dari atom hidrogen dalam medan listrik. E. pengaruh medan listrik pada atom hidrogen. 5. Pandangan yang menjadi dasar timbulnya model atom mekanika kuantum adalah dari .... A. Rutherford, Neils Bohr, dan Broglie B. Pauli, Neils Bohr, dan de Broglie C. Rutherford, de Broglie, dan Hund D. Schrodinger, de Broglie, dan Heisenberg E. Dalton, de Broglie, dan Heisenberg 6. Model matematika yang diajukan oleh Schrodinger menyatakan persamaan .... A. energi potensial elektron B. energi total elektron C. energi kinetik elektron D. pergerakan atom dalam ruang E. energi antaraksi antara elektron dan inti 7. Definisi yang tepat tentang orbital adalah .... A. lintasan elektron dalam mengelilingi inti atom B. kebolehjadian ditemukannya elektron dalam atom C. tempat elektron dalam mengelilingi inti atom D. bentuk lintasan elektron mengelilingi inti atom E. jenis-jenis elektron dalam suatu atom 8. Bilangan kuantum utama menurut teori atom mekanika kuantum menyatakan .... A. energi atom hidrogen B. tingkat energi elektron dalam atom C. kecepatan pergerakan elektron D. kedudukan elektron terhadap elektron lain E. keadaan elektron tereksitasi 9. Bilangan kuantum magnetik menurut teori atom mekanika kuantum menentukan .... A. tingkat energi elektron B. arah putaran elektron C. peluang menemukan elektron D. orientasi orbital dalam ruang E. bentuk orbital 10. Bilangan kuantum azimut menurut teori atom mekanika kuantum menentukan .... A. tingkat energi elektron B. arah putaran elektron C. peluang menemukan elektron D. orientasi orbital dalam ruang E. bentuk orbital 11. Bilangan kuantum spin menunjukkan .... A. arah putaran elektron mengelilingi inti B. arah putaran elektron pada porosnya C. orientasi orbital dalam subkulit D. arah putaran inti atom pada porosnya E. kedudukan elektron dalam atom 12. Bentuk orbital ditentukan oleh bilangan kuantum .... A. n D. s B. m E. m dan A C. A 13. Orbital-s berbentuk bola. Hal ini disebabkan oleh .... A. bentuk kerapatan elektron di dalam atom B. aturan dalam teori atom mekanika kuantum C. subkulit berharga nol D. bilangan kuantum magnetik nol E. bilangan kuantum spin berharga 1 2 14. Untuk n = 3, memiliki bilangan kuantum azimut dan subkulit .... A. 0s D. 0s, 1p B. 1p E. 0s, 1p, 2d C. 2d Evaluasi Kompetensi Bab 1 15. Jumlah orbital dalam suatu atom yang memiliki empat kulit n = 4 adalah .... A. 8 D. 20 B. 12 E. 32 C. 16 16. Jumlah maksimum elektron yang dapat menghuni orbital dengan n = 3 adalah .... A. 8 D. 18 B. 9 E. 32 C. 10 17. Jumlah orbital dalam subkulit 2p adalah .... A. 2 D. 10 B. 4 E. 14 C. 6 18. Jumlah maksimum elektron yang dapat menghuni subkulit d adalah .... A. 2 D. 14 B. 6 E. 18 C. 10 19. Jumlah maksimum elektron dalam subkulit f adalah .... A. 2 D. 14 B. 6 E. 18 C. 10 20. Jumlah orbital yang terdapat dalam atom Ne dengan nomor atom 10 adalah .... A. 2 D. 7 B. 3 E. 10 C. 5 21. Jumlah orbital yang terdapat dalam atom Mn dengan nomor atom 25 adalah .... A. 4 D. 13 B. 7 E. 15 C. 10 22. Bilangan kuantum yang tidak diizinkan menurut aturan Pauli adalah .... A. n = 3, A= 0, m= 0, dan s =+1 2 B. n = 3, A= 1, m = 1, dan s = –1 2 C. n = 3, A= 2, m = –1, dan s =+1 2 D. n = 3, A=1, m = 2, dan s = –1 2 E. n = 3, A = 2, m = 2, dan s = +1 2 23. Berikut ini yang berturut-turut merupakan bilangan kuantum n, A, m, dan s yang menerangkan konfigurasi elektron terluar atom 5B pada keadaan dasar adalah .... A. 2, 1, –1, 1 2 D. 2, 0, 0, 1 2 B. 2, 1, 0, 1 2 E. Opsi a, b, c benar C. 2, 1, +1, 1 2 24. Bilangan kuantum yang diizinkan menurut aturan Pauli adalah .... A. n = 2, A= 0, m = 0, dan s = +1 2 B. n = 2, A= 1, m = 2, dan s = –1 2 C. n = 2, A= 2, m = –1, dan s = +1 2 D. n = 2, A= 1, m = 2, dan s = +1 2 E. n = 2, A= 2, m = 2, s = +1 2 25. Unsur X memiliki konfigurasi elektron 1s2 2s2 2p6. Harga keempat bilangan kuantum elektron valensi dari atom X adalah .... A. n = 2,A= 0, m = 0, dan s = –1 2 B. n = 2,A= 1, m = 1, dan s = –1 2 C. n = 3,A= 0, m = 0, dan s = +1 2 D. n = 3,A= 1, m = –1, dan s = +1 2 E. n = 3,A= 2, m = 0, dan s = +1 2 26. Diagram tingkat energi orbital untuk atom hidrogen adalah .... A. 1s < 2s < 2p < 3s < 3p < 3d < 4s B. 1s = 2s < 2p = 3p < 3d = 4s C. 1s < 2s = 2p < 3s = 3p = 3d < 4s D. 1s < 2s < 2p < 3s < 3p < 3d = 4s E. 1s = 2s = 2p = 3s = 3p = 3d = 4s 27. Diagram tingkat energi atom berelektron banyak menurut aturan aufbau adalah .... A. 1s < 2s < 2p < 3s < 3p < 4s < 3d B. 1s = 2s < 2p = 3p < 3d = 4s C. 1s < 2s = 2p < 3s = 3p = 3d < 4s D. 1s = 2s < 2p = 3p < 3d = 3f < 4s E. 1s = 2s = 2p = 3s = 3p = 3d = 4s 28. Konfigurasi elektron yang tidak sesuai dengan aturan Hund adalah .... A. 1s2 B. 1s2 2s2 2p x1 C. 1s2 2s2 2p x1 2py2 D. 1s2 2s1 E. 1s2 2s2 2p z1 29. Andaikan larangan Pauli membolehkan terdapat tiga elektron dalam satu orbital, seperti berikut 1. 1s3; 2. 1s3 2s3 2p6; 3. 1s3 2s3 2p9; 4. 1s3 2s3 2p9 3s3. Konfigurasi elektron gas mulia adalah .... A. 1, 2, 3 D. 3 B. 1, 3 E. 1, 4 30. Unsur 19K memiliki konfigurasi elektron .... A. 1s2 2s2 2p6 3s2 3p6 3d1 B. 1s2 2s2 2p6 3s2 3p6 4d1 C. 1s2 2s2 2p6 3s2 3p5 3d5 D. 1s2 2s2 2p6 3s2 3p6 4s1 E. 1s2 2s2 2p6 3s2 3p5 4s2 31. UMPTN 99/A Nomor atom unsur X sama dengan 26. Konfigurasi elektron ion X3+ adalah .... A. 1s2 2s2 2p6 3s2 3p6 3d6 4s2 B. 1s2 2s2 2p6 3s2 3p6 3d4 4s2 C. 1s2 2s2 2p6 3s2 3p6 3d3 4s2 D. 1s2 2s2 2p6 3s2 3p6 3d5 4s1 E. 1s2 2s2 2p6 3s2 3p6 3d5 32. Konfigurasi elektron pada keadaan dasar dari atom 29Cu adalah .... A. [Ar]18 3d9 4s2 D. [Ar]18 3d5 4s2 4p4 B. [Ar]18 4s2 3d9 E. [Ar]18 3d6 4s2 4p3 C. [Ar]18 3d10 4s1 33. Konfigurasi elektron pada keadaan dasar dari ion 26Fe3+ adalah .... A. [Ar]18 3d3 4s2 D. [Ar]18 3d4 4s1 B. [Ar]18 3d6 4s2 E. [Ar]18 3d6 C. [Ar]18 3d5 34. Nomor atom belerang adalah 16. Dalam ion sulfida, S2–, konfigurasi elektronnya adalah .... A. 1s2 2s2 2p6 3s2 3p4 B. 1s2 2s2 2p6 3s2 3p2 C. 1s2 2s2 2p6 3s2 3p2 4s2 D. 1s2 2s2 2p6 3s2 3p5 E. 1s2 2s2 2p6 3s2 3p6 4s2 35. Konfigurasi elektron yang lebih stabil adalah .... A. 1s2 2s2 2p6 3s2 3p6 3d5 4s2 B. 1s2 2s2 2p6 3s2 3p6 3d4 4s2 C. 1s2 2s2 2p6 3s2 3p6 4s1 3d6 D. 1s2 2s2 2p6 3s2 3p4 4s1 E. 1s2 2s2 2p6 3s2 3p2 4s2 36. Jika unsur M dapat membentuk senyawa MHSO42 yang stabil maka konfigurasi elektron unsur M adalah .... A. 1s2 2s2 2p6 3s2 D. 1s2 2s2 2p6 3s2 3p6 B. 1s2 2s2 2p6 3s2 3p2 E. 1s2 2s2 2p4 C. 1s2 2s2 2p6 3s2 3p4 37. Jumlah elektron valensi dari unsur dengan konfigurasi elektron 1s2 2s2 2p6 3s2 3p1 adalah .... A. 1 D. 7 B. 3 E. 8 C. 5 38. Jumlah elektron valensi untuk atom dengan konfigurasi elektron 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p5 adalah .... A. 1 D. 7 B. 3 E. 8 C. 5 39. UMPTN 97/A Masing-masing unsur P, Q, R, S, dan T berikut ini memiliki konfigurasi elektron berikut P 1s2 2s2 2p6 3s2 Q 1s2 2s2 2p6 3s1 R 1s2 2s2 2p6 3s2 3p2 S 1s2 2s2 2p6 3s2 3p6 3d10 4s2 T 1s2 2s2 2p6 3s2 3p5 3d10 4s2 4p6 5s2 Pasangan yang merupakan unsur-unsur dari satu golongan yang sama adalah .... A. P dan T D. P dan R B. P dan Q E. S dan T C. P dan S 40. UMPTN 97/C Di antara unsur-unsur 4A, 12B, 18C, dan 16D yang terletak dalam golongan yang sama pada tabel periodik adalah .... A. A dan B D. B dan D B. A dan C E. A dan D C. B dan C 41. Konfigurasi elektron ion L3+ adalah sebagai berikut. 1s2 2s2 2p6 3s2 3p6 3d3 Pada sistem periodik atom unsur L terletak pada .... A. periode ke-3 golongan VIA B. periode ke-3 golongan VIIA C. periode ke-4 golongan IVB D. periode ke-4 golongan VIA E. periode ke-4 golongan VIB 42. Unsur X berada dalam golongan IIA periode ke-4. Konfigurasi elektron unsur tersebut adalah .... A. 1s2 2s2 2p6 3s2 3p6 4s1 B. 1s2 2s2 2p6 3s2 3p6 4s2 C. 1s2 2s2 2p6 3s2 3p2 3d1 4s2 D. 1s2 2s2 2p6 3s2 3p6 E. 1s2 2s2 2p4 3s2 3p6 3d2 4s0 43. Unsur X berada dalam golongan IA periode ke-4. Konfigurasi elektron unsur tersebut adalah .... A. 1s2 2s2 2p6 3s2 3p6 4s1 B. 1s2 2s2 2p6 3s2 3p6 4s2 C. 1s2 2s2 2p6 3s2 3p2 3d1 4s2 D. 1s2 2s2 2p6 3s2 3p6 E. 1s2 2s2 2p4 3s2 3p6 3d2 4s0 44. Pasangan ion-ion berikut yang keduanya memiliki konfigurasi elektron tidak sama adalah A. Mg2+ dan Na+ B. N– dan F+ C. O– dan Na+ D. O2– dan Mg2+ E. Ne+ dan O– 45. UMPTN 95/C Unsur X termasuk golongan oksigen, tidak dapat membentuk senyawa atau ion .... A. X2– D. XH 3 B. H2X E. ZnX 46. UMPTN 95/A Unsur X memiliki konfigurasi elektron 1s2 2s2 2p6 3s2 dapat bereaksi dengan unsur Y yang terletak pada golongan oksigen membentuk senyawa .... A. XY D. X3Y B. X2Y E. XY2 C. X2Y3 47. Unsur M memiliki konfigurasi elektron 1s2 2s2 2p6 3s2 3p1. Senyawa yang dapat dibentuk dengan atom klor dari unsur tersebut adalah .... A. MCl D. MCl4 B. MCl2 E. MCl5 C. MCl3 48. UMPTN 96/A Unsur X memiliki nomor atom 20. Senyawa garamnya jika dipanaskan akan menghasilkan gas yang dapat mengeruhkan air barit BaCl2. Rumus senyawa garam itu adalah .... A. X2SO4 D. XCO3 B. XSO4 E. XCl2 C. X2CO3 49. UMPTN 98/B Unsur X terdapat dalam golongan karbon dan unsur Y memiliki nomor atom 17. Senyawa yang dapat terbentuk dari kedua unsur tersebut adalah .... A. XY D. XY3 B. X2Y E. XY4 C. XY2 50. UMPTN 98/B Suatu unsur X memiliki konfigurasi elektron 1s2 2s2 2p6 3s2 3p3. Rumus senyawa yang mungkin akan terbentuk antara unsur X dengan kalsium 20Ca adalah .... A. CaX D. Ca2X3 B. Ca2X E. Ca3X2 C. CaX2 8. Tuliskan konfigurasi elektron untuk setiap atom berikut a. 27 13Al d. 40 20Ca b. 3216S e. 4822Ti c. 4018Ar 9. Tuliskan konfigurasi elektron untuk setiap ion berikut a. N3– d. Cl– b. Mg2+ e. Sc3+ c. Al3+ 10. Manakah konfigurasi elektron yang dibolehkan dan yang dilarang menurut aturan Pauli? a. 1s2 2s1 2p3 d. 1s2 2s2 2p5 b. 1s2 2s2 2p4 e. 1s2 2s2 2p2 c. 1s2 2s3 2p3 f. 1s2 2s2 2p6 3s1 3d9 11. Andaikan bilangan kuantum spin memiliki tiga harga yang dibolehkan s = 0, +1 2, – 1 2. Tuliskan nomor atom unsur neon. 12. Dalam hal apakah orbital 1s dan 2s berbeda dan keduanya mirip? 13. Mengapa pada periode pertama hanya tedapat 2 unsur; periode kedua dan ketiga 8 unsur; pada periode keempat dan kelima 18 unsur; dan pada periode keenam 32 unsur? Jelaskan. 14. Bagaimanakah cara untuk menentukan golongan dan periode unsur-unsur golongan utama, transisi dan transisi dalam? 15. Jika ditemukan unsur dengan nomor atom 121, pada golongan dan periode berapakah unsur tersebut ditempatkan dalam sistem periodik? B. Jawablah pertanyaan berikut dengan benar. 1. Dalam hal apakah model atom bohr berbeda dengan model atom mekanika kuantum? 2. Apakah yang dapat diketahui tentang keberadaan elektron dalam dengan model atom mekanika kuantum? 3. Tuliskan keempat bilangan kuantum yang digunakan dalam model atom mekanika kuantum dan berikan uraiannya. 4. Tuliskan semua set keempat bilangan kuantum yang mungkin untuk elektron dalam orbital 3p. 5. Berapakah jenis orbital yang dihuni oleh elektron dengan bilangan kuantum n = 4, A= 1? Berapakah jumlah orbital yang ditemukan di dalam atom K? 6. Tuliskan bilangan kuantum untuk setiap elektron yang ditemukan dalam atom oksigen. Contohnya, bilangan kuantum untuk satu elektron dalam 2 s adalah n = 2; A= 0; m = 0; s = +1 2. 7. Bilangan kuantum yang mengkarakterisasi elektron pada tingkat energi terendah dari atom hidrogen adalah n = 1; A = 0, m =0; dan s = +1 2. Eksitasi elektron dapat mempromosikan ke tingkat energi lebih tinggi. Set bilangan kuantum manakah yang dilarang untuk elektron tereksitasi? a. n = 1, A = 0, m = –1, s = +1 2 b. n = 3, A = 1, m = 0, s = +1 2 c. n = 3, A = 2, m = –2, s = –1 2 d. n = 7, A = 4, m = –2, s = +1 2 Struktur dan Gaya
Orbitalorbital dalam satu subkulit mempunyai tingkat energi yang sama, sedangkan orbital-orbital dari subkulit berbeda, tetapi dari kulit yang sama mempunyai tingkat energi yang bermiripan. Susunan kulit, subkulit, dan orbital dalam suatu atom berelektron banyak disederhanakan seperti pada gambar berikut ini:
- Model atom mekanika kuantum menyatakan bahwa elektron berada pada orbital-orbital atom. Atom-atom tersebut menempati orbital sesuai dengan susunannya, atau yang disebut sebagai konfigurasi elektron. Aturan dalam konfigurasi elektron terdiri dari tiga yakni Prinsip Aufbau, Aturan Hund, dan Larangan Aufbau Dilansir dari Encyclopaedia Britannica, Prinsip Aufbau dikemukaan oleh fisikawan Denmark bernama Niels Bohr pada tahun 1920. Baca juga Model Atom Bohr Prinsip Aufbau menyatakan bahwa pada kondisi dasar, elektron akan menempati kulit elektron dengan energi yang lebih rendah menuju energi yang lebih tinggi. Prinsip Aufbau digambarkan dalam diagram berikut silmi aturan Aufbauf Pada gambar terlihat bahwa konfigurasi elektron dengan Prinsip Aufbau bergantung pada penjumlahan bilangan kuantum utama n dan bilangan kuantum azimuth l. Urutan energi orbital atom dari yang paling rendah ke yang paling tinggi adalah 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, dan seterusnya. Maka elektron akan menempati sub kulit 1s terlebih dahulu baru menempati sub kulit 2s. Pada subkulit s hanya dapat ditempati oleh 2 elektron. Pada subkulit p hanya dapat ditempati 6 elektron. Pada sub kulit d hanya dapat ditempati 10 elektron, dan pada kulit f hanya dapat ditempati 14 elektron. Baca juga Model Atom Mekanika Kuantum

Modelatom ini tidak bisa menjelaskan sprektrum warna dari atom berelektron banyak. 5. Oleh karena itu tingkat enrgi terendah dalam atom adalah orbital 1s, 2s, 2p, 3s, 3p dst. (aturan aufbau), tingkat energi paling rendah dihuni lebih dulu.

– Mungkin sebagian kita ada yang menyukai pelajaran kimia. Dari senyawa atom terkecil hingga rumus kimia tersulit pun dapat kita bahas dalam artikel ini. Pada artikel kali ini kita akan bahas mengenai konfigurasi elektron. Mari simak penjelasannya di bawah ini. Pengertian Konfigurasi ElektronMacam – Macam Konfigurasi ElektronAturan atau Prinsip Konfigurasi ElektronPenulisan Konfigurasi ElektronKonfigurasi Elektron dan Bilangan KuantumRumus Konfigurasi Elektron = 2n2Contoh Soal Konfigurasi ElektronSebarkan iniPosting terkait Pengertian Konfigurasi Elektron Untuk bisa memahami pengertian konfogurasi elektron dapat dijelaskan menggunakan pemisahan makna kata tersebut. Konfigurasi merupakan suatu susunan atau aturan. Sedangkan Elektron merupakan suatu partikel sub atom yang memiliki muatan. Sehingga konfogurasi elektron dapat diartikan sebagai suatu susunan elektron-elektron pada sebuah atom. Susunan tersebut dapat mengikuti kaidah dan pola yang telah ditentukan. Jadi sebelum membahas tentang konfigurasi elektron lebih lanjut, hal yang harus diketahui adalah suatu atom memiliki kulit dan subkulit. Secara lebih jelas Konfigurasi elektron dapat diartikan sebagai suatu penataan atau penyusunan elektron ke dalam kulit dan subkulit atom. Berdasarkan pengertian diatas dapat dijelaskan bahwa terdapat dua cara dalam suatu penulisan konfigurasi elektron. Cara tersebut yaitu bisa berdasarkan kulit atom atau berdasarkan subkulit atomnya. Konfigurasi elektron ini berdasarkan kulit atom hanya berlaku untuk unsur golongan utama, yaitu unsur golongan IA sampai VIIIA. Macam – Macam Konfigurasi Elektron Konfigurasi Elektron juga memiliki beberapa macam – macamnya, yakni sebagai berikut 1. Kulit dan Subkulit Konfigurasi Elektron Model atom Bohr merupakan suatu dasar dari konfigurasi elektron dengan bentuk yang masih umum berkaitan dengan kulit dan subkulit. Konfigurasi elektron merupakan suatu himpunan atau kumpulan elektron-elektron yang menempati bilangan kuantum utama n yang sama. Dalam teori kimia dapat dijelaskan bahwa atom ke n dapat menampung 2n2 elektron. Misalnya, jika kulit pertama bisa menampung 2 elektron, kulit kedua 8 elektron, dan kulit ketiga 18 elektron. Sedangkan subkulit atom pada konfigurasi elektron merupakan suatu elektron-elektron yang memiliki bilangan kuantum azimut ℓ dalam suatu kulit. Nilai-nilai ℓ bilangan kuantum azimuth yakni 0, 1, 2, 3. Angka-angka tersebut akan melambangkan s, p, d, dan f. Setiap sub kulitnya maksimum dapat diisi dengan 22ℓ+1 elektron. Terdapat beberapa model dalam penentuan suatu konfirasi elektron. Model-model tersebut dapat dijelaskan sebagai berikut ini A. Model Panjang Konfigurasi elektron model panjang merupakan suatu konfigurasi yang paling umum. Konfigurasi elektron model ini ditulis dalam bentuk nomor urutan subkulit, dimana setiap sub kulit ini memiliki nama berupa angka berpangkat. Angka-angka tersebut dapat menyatakan jumlah elektron. Misalnya, hidrogen H hanya elektron yang berjumlahnya adalah 1 hal ini karena nomor atom H adalah 1. Sehingga konfigurasi elektron untuk hidrogen tersebut ialah 1s1. B. Model Gas Mulia Gas mulia memiliki nomor atom yang dapat direkomendasikan untuk mempersingkat penulisan suatu konfigurasi elektron. Tujuannya adalah agar penulisan konfigurasi elektron ini tidak terlalu panjang. Misalnya, pada konfigurasi elektron P jika menggunakan konfigurasi elektron model panjang dituliskan dengan 1s2 2s2 2p6 3s2 3p3, akan tetapi dengan menggunakan model gas mulia ini dapat dituliskan menjadi [Ne] 3s2 3p3. Hal ini karena Neon [Ne] juga merupakan salah satu gas mulia dengan nomor atom 10 dengan konfigurasi 1s2 2s2 2p6. C. Pengisian Elektron Aturan dalam penulisan konfurasi elektron ini tidaklah ditulis sembarangan, akan tetapi penulisannya harus berdasarkan kenaikan energi yang dialami elektron tersebut. Agar lebih mudah untuk bisa memahami model pengisian elektron ini kita dapat memperhatikan gambar konfigurasi elektron berikut ini. Berdasarkan gambar tersebut, maka urutan atau penyusunan dalam suatu pengisian elektron diawali dari 1s hingga 8s. Urutan pengisian elektron tersebut adalah sebagai berikut, 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, dan 8s. D. Konfigurasi Elektron Ion Dalam suatu konfigurasi elektron ternyata terdapat beberapa unsur yang terionisasi. Unsur-unsur yang dapat terionisasi ini jumlah elektronnya akan berubah berkurang. Misalnya, pada besi Fe memiliki nomor atom 26 dengan konfigurasi elektron [Ar]3d64s2. Akan tetapi penulisan konfigurasi elektronnya ini akan berubah jika Fe terionisasi menjadi Fe2+. Fe2+ ini menunjukkan Fe akan terionisasi sehingga mengalami pengurangan 2 buah elektron dari 26 elektronnya. Sehingga penulisan konfigurasi elektron Fe2+ yakni [Ar]3d6. Hal yang perlu dicatat jika sebuah unsur ini terionisasi, yang berkurang adalah elektron valensinya. Elektron valensi suatu unsur adalah suatu elektron terluar unsur tersebut. 2. Notasi Konfigurasi Elektron Notasi merupakan standar yang digunakan untuk mengetahui suatu konfigurasi elektron dari sebuah atom dan molekul. Dalam ilmu kimia untuk atom, notasinya juga terdiri dari urutan orbital atom dengan nomor elektron mengisi masing-masing orbital dalam format angka berpangkat. Misalnya pada hidrogen H memiliki satu elektron dalam orbital s kulit pertama, sehingga konfigurasinya ditulis 1s1. Litium ini memiliki dua elektron di subkulit 1s dan satu elektron di subkulit 2s sehingga konfigurasi elektronnya ditulis 1s2 2s1. Angka yang berpangkat 1 pada notasi tidak wajib dicantumkan. 3. Energi Dalam Konfigurasi Elektron Energi juga dapat dikaitkan dengan suatu elektron dalam orbital. Energi dalam sebuah konfigurasi ini sering kali mendekati jumlah energi di setiap elektron dengan mengabaikan interaksi antar elektron. Suatu konfigurasi yang memiliki energi terendah disebut keadaan dasar ground state. Sedangkan konfigurasi lainnya disebut dengan keadaan tereksitasi excited state. 4. Prinsip Aufbau Dan Aturan Madelung Dalam Konfigurasi Elektron Orbital yang diisi untuk meningkatkan nilai n+l. Dimana dua orbital ini memiliki nilai n+l yang sama. Berikut ini yaitu suatu urutan orbital pada konfigurasi elektron 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s, 5g, 6f, 7d, 8p, dan 9s 5. Penyimpangan Konfigurasi Elektron 1. Penyimpangan Konfigurasi Elektron Pada Orbiital d Penyimpangan pada orbital subkulit d ini dikarenakan orbital yang setengah penuh d5 atau penuh d10 itu akan bersifat lebih stabil dibandingkan dengan orbital yang hampir setengah penuh d4 atau hampir penuh d8 atau d9. tabel orbital d 2. Penyimpangan Konfigurasi Elektron Pada Orbital f Pada orbital f, sebagaimana dengan penyimpangan konfigurasi dalam orbital d, maka suatu konfigurasi elektron yang berakhir pada orbital f juga mengalami penyimpangan. 6. Konfigurasi Elektron Dalam Molekul Dalam molekul, konfigurasi elektronnya ini semakin rumit. Masing-masing molekul ini memiliki struktur orbital yang berbeda. Orbital molekul ini ditandai berdasarkan simetrinya. Misalnya pada O2 ditulis 1g2 1u2 2g2 2u2 3g2 1πu4 1πg2, atau setara dengan 1g2 1u2 2g2 2u2 1πu4 3g2 1πg2. Istilah 1πg2 juga mewakili dua elektron di dalam dua turunan orbital ke-π* antibonding. Aturan atau Prinsip Konfigurasi Elektron Atom memiliki suatu aturan-aturan dalam menentukan konfigursi elektronnya. Terdapat aturan dalam konfigurasi elektron yakni 1. Aturan Aufbau Aturan Aufbau merupakan salah satu aturan yang paling digunakan dalam suatu konfigurasi elektron. Aturan ini menjelaskan tentang suatu pengisian orbital fungsi matematika yang menggambarkan perilaku elektron yang dimulai dari tingkat energi rendah ke yang tingkat energi tinggi. Umumnya, elektron ini menempati subkulit yang energinya rendah lebih dulu. Bilangan kuantum utama n dan bilangan kuantum azimuth l ini dijadikan rujukan untuk mengetahui tingkat energi pada suatu sub kulit. Pada orbital, harga n + l ini mempengaaruhi tingkat energi pada subkulit tertentu. Sehingga jika harga n + 1nya memiliki nilai yang sangat besar maka tingkat energinya lebih besar. 2. Aturan Pauli Aturan Pauli ini disebut juga dengan Eksklusi Pauli. Sesuai dengan namanya sebuah aturan ini dikemukakan oleh Wolfgang Pauli 1926. Aturan ini juga berupa larangan yang menyatakan bahwa tidak boleh terdapat dua elektron dalam satu atom dengan empat bilangan kuantum yang sama. Hal ini setiap orbital yang sama juga memiliki bilangan kuantum n, l, m, namun, yang menjadi pembeda adalah bilangan kuantum spin s. Berdasarkan hal tersebut, dapat dijelaskan juga bahwa setiap orbital hanya bisa diisi 2 elektron dengan spin yang berlawanan. Hal ini karena jika elektron ketiga dimasukkan maka akan terdapat spin yang sama dengan salah satu elektron pada sebelumnya. 3. Aturan Hund Aturan hund ini dikemukakan oleh Friedrick Hund 1930. Dalam aturan ini dijelaskan bahwa suatu elektron-elektron dalam orbital-orbital suatu subkulit cenderung untuk tidak berpasangan. Jadi elektron-elektron baru bisa berpasangan jika pada subkulit itu sudah tidak ada lagi orbital kosong. Awalnya semua ruang orbital yang diisi dengan satu spin dengan arah panah keatas. Setelah semua ruang penuh maka diisi juga spin dengan panah kebawah. 4. Aturan Penuh Setengah Penuh Aturan ini juga berkaitan erat dengan hibridisasi elektron. Aturan ini menjelaskan bahwa suatu elektron ini memiki kecenderungan untuk berpindah orbital apabila dapat membentuk suatu susunan elektron yang lebih stabil untuk konfigurasi elektron yang berakhiran pada sub kulit d akan berlaku aturan penuh setengah penuh. Misalnya 24Cr = 1s2 2s2 2p6 3s2 3p6 4s2 3d4 akan menjadi 24Cr = 1s2 2s2 2p6 3s2 3p6 4s1 3d5. Berdasarkan contoh yang tadi dapat dikatakan bahwa jika 4s diisi 2 elektron maka 3d kurang satu elektron untuk menjadi setengah penuh. Sehingga elektron yang berada di 4s ini akan berpindah ke 3d. Penulisan Konfigurasi Elektron Konfigurasi elektron penulisannya ini berdasarkan teori atom dalam pembahasan mekanika kuantum. Kemudian, elektron-elektron ditempatkan pada suatu orbital-orbital sesuai dengan urutan tingkat energinya aturan Aufbau, dan tingkat energi yang paling rendah diisi terlebih dahulu. Cara pengisian orbital sama dengan pengisian pada suatu tingkat energi, dimana dalam pengisiannya sesuai dengan aturan Hund, tetapi jumlah elektron yang menempati ruang hanya dua saja satu elektron berpangan yang sesuai aturan Pauli. Pada gambar berikut ini merupakan contoh cara penulisan konfigurasi elektron yang benar. Penulisan suatu konfigurasi elektron dapat disingkat dengan menggunakan nomor atom unsur lain seperti yang telah dijelaskan pada model konfigurasi elektron. Konfigurasi Elektron dan Bilangan Kuantum Bilangan kuantum ini dapat ditentukan berdasarkan konfigurasi elektron, misalnya atom oksigen O bernomor atom 8, sehingga memiliki 8 elektron, suatu konfigurasi elektron atom oksigen adalah 8O 1s2 2s2 2p4. Konfigurasi elektron tersebut dapat diuraikan menjadi beberapa bentuk seperti dibawah ini 1 1s2 2s2 2px2 2py1 2pz1 2 1s2 2s2 2px1 2py2 2pz1 3 1s2 2s2 2px1 2py1 2pz2 Berdasarkan contoh tersebut maka dapat dilihat bahwa pada elektron terakhir dari atom oksigen memiliki bilangan kuantum sebagai berikut ini. 1 Bilangan kuantum utama, n= 2 2 Bilangan kuantum azimut, l= 1 3 Bilangan kuantum spin, s= –½ 4 Bilangan kuantum magnetik, m= –1, +1, atau 0 tidak pasti, semua orbital ini memiliki peluang yang sama untuk dihuni. Rumus Konfigurasi Elektron = 2n2 Contoh Soal Konfigurasi Elektron Konfigurasi elektron yang benar untuk 24 Cr yaitu ?? Penyelesaian Menurut aturan Aufbau untuk 24 Cr adalah … 1s2 2s2 2p6 3s2 3p6 4s2 3d4 Berdasarkan percobaan 1s2 2s2 2p6 3s2 3p6 4s1 3d5 setengah Penuh Untuk sub kulit d, terisi elektron setengah penuh atau penuh ternyata lebih stabil dibandingkan dengan aturan aufbau. Jadi, Konfigurasi elektron yang benar untuk 24 Cr yaitu 1s2 2s2 2p6 3s2 3p6 4s1 3d5 setengah Penuh Demikianlah penjelasan mengenai √ Konfigurasi Elektron Pengertian, Macam, Aturan, Penulisan, Rumus & Contoh Soalnya Lengkap Semoga dapat memberikan manfaat dan ilmu pengetahuan serta wawasan yang sangat luas untuk para pembaca. Terima kasih. Baca Juga Artikel Lainnya Bunyi Adalah Sinar Gamma Getaran Adalah Gelombang Adalah Induksi Elektromagnetik Tabel Sistem Periodik Unsur Kimia

Namununtuk tingkat-tingkat energi yang makin tinggi oleh karena naiknya nomor atom, perbedaan energi orbital-orbital tersebut makin tegas, dan pada sekitar "awal" unsur-unsur transisi yakni nomor atom 19-22, 38-40, 56-59, dan 89-91, penyusutan energi orbital nd dan nf terjadi secara "mendadak" tidak "semulus" seperti penyusutan
Pembahasanâ–³ H f ​ SO 3 ​ â–³ H d ​ SO 3 ​ â–³ H d ​ SO 3 ​ ​ = = = = = = = = ​ Pembentukan 2 mol SO 3 ​ â–³ H 2 ​ + â–³ H 3 ​ − 593 , 8 kJ − 196 , 6 kJ − 790 , 4 kJ / mol Penguraian 2 mol SO 3 ​ â–³ H 2 ​ + â–³ H 3 ​ 593 , 8 kJ + 196 , 6 kJ + 790 , 4 kJ / mol Penguraian 1 mol SO 3 ​ 2 + 790 , 4 kJ / mol ​ + 395 , 2 kJ / mol ​ Perubahanentalpi standar penguraianadalah perubahanentalpidaripenguraian1 molar senyawa menjadi unsur-unsur penyusunnya dalam penguraianini adalah kebalikan darireaksipembentukan senyawa. Sehingga entalpi peruraian adalah+ 395,2 kJ/mol. Jadi, jawaban yang tepat adalah D. Perubahan entalpi standar penguraian adalah perubahan entalpi dari penguraian 1 molar senyawa menjadi unsur-unsur penyusunnya dalam keadaan standar. Reaksi penguraian ini adalah kebalikan dari reaksi pembentukan senyawa. Sehingga entalpi peruraian adalah + 395,2 kJ/mol. Jadi, jawaban yang tepat adalah D. SISTEMPERIODIK UNSUR . 1. Teori atom Bohr dikembangkan berdasarkan postulat yang memadukan teori atom Rutherford dan teori gelombang dari Planck. 2. Kelemahan teori atom Bohr, ya Ilustrasi aturan aufbau. Foto Unsplash/Mehdi MirzaieDalam belajar kimia atau fisika, salah satu materi yang diajarkan adalah konfigurasi elekton. Konfigurasi elektron menandakan penataan elektron dalam suatu atom. Salah satu penetapan orbital atom adalah aturan aufbau memfokuskan pada proses di sekitaran elektron. Hal ini membantu dalam memprediksi secara teoritis konfigurasi elektron suatu unsur dalam tabel Aufbau dalam Ilmu KimiaIlustrasi aturan aufbau. Foto Unsplash/BoliviaInteligenteAufbau adalah kata yang diambil dari bahasa Jerman yang artinya kontruksi’. Nama ini diambil dari kata Aufbauprinzip, prinsip membangun’. Meski begitu, nama ini bukan diberi oleh seorang Niesl Bohr berusaha menyelidiki sifat atom dan karateristiknya. Bohr berusaha menyempurnakan kontribusi Ernest Rutheford. Dari sini, ia mendirikan premis-premis menekankan bahwa inti atom tetap berada di pusat dikelilingi oleh elektron yang mengubah tingkat karena kehilangan atau peningkatan aturan aufbau, elekton akan menempati orbital yang memiliki energi terendah terlebih dahulu yang memilki energi lebih tinggi. Dengan begitu, atom terlebih dahulu berada pada tingkat energi yang menyusun energi elekton dalam aturan aufbau, bilangan kuantum utama dengan n=1. Setelah tingkat energi elektron diurutkan berdasarkan bilangan kuantum utama, kemudian diurutkan lagi berdasarkan bilangan kuantum azimut sebab orbital-orbital dalam atom berelektron banyak tidak bilangan kuantum azimut, tingkat energi terendah adalah orbital dengan bilangan kuantum azimut terkecil atau 1=0. Jadi, urutan tingkat energinya adalah s < p < d < f < [1 = n—1]Dikutip dari buku Serial Modul Pembelajaran Berorientasi Nature Of Science NOS Kimia Umum Atom, Molekul, dan Sifat Zat oleh Yusran Khery, dkk 2019 80, pada aturan aufbau, pengisian orbital dimulai dari orbital 1s, 2s, tingkat energi dari yang terendah ke tingkat energi paling tinggi, yakni1s < 2s < 2p < 3s < 3p <4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < dan konfigurasi elektron 12Mg berdasarkan aturan aufbau!Apabila mengisi elektron pada orbital yang memiliki energi terendah dalam aturan aufbau yakniItulah penjelasan singkat tentang aturan aufbau dalam menetapkan orbital energi. Semoga penjelasan singkat di atas bermanfaat sebagai pembelajaran untuk memperdalam materi tentang konfigurasi elektron. MZM .
  • zse1hllozg.pages.dev/237
  • zse1hllozg.pages.dev/231
  • zse1hllozg.pages.dev/242
  • zse1hllozg.pages.dev/196
  • zse1hllozg.pages.dev/88
  • zse1hllozg.pages.dev/180
  • zse1hllozg.pages.dev/66
  • zse1hllozg.pages.dev/307
  • diagram tingkat energi atom berelektron banyak menurut aturan aufbau adalah